pyspark.sql.functions.regr_intercept#
- pyspark.sql.functions.regr_intercept(y, x)[source]#
Aggregate function: returns the intercept of the univariate linear regression line for non-null pairs in a group, where y is the dependent variable and x is the independent variable.
New in version 3.5.0.
- Parameters
- Returns
Column
the intercept of the univariate linear regression line for non-null pairs in a group.
Examples
Example 1: All pairs are non-null
>>> import pyspark.sql.functions as sf >>> df = spark.sql("SELECT * FROM VALUES (1, 1), (2, 2), (3, 3), (4, 4) AS tab(y, x)") >>> df.select(sf.regr_intercept("y", "x")).show() +--------------------+ |regr_intercept(y, x)| +--------------------+ | 0.0| +--------------------+
Example 2: All pairs’ x values are null
>>> import pyspark.sql.functions as sf >>> df = spark.sql("SELECT * FROM VALUES (1, null) AS tab(y, x)") >>> df.select(sf.regr_intercept("y", "x")).show() +--------------------+ |regr_intercept(y, x)| +--------------------+ | NULL| +--------------------+
Example 3: All pairs’ y values are null
>>> import pyspark.sql.functions as sf >>> df = spark.sql("SELECT * FROM VALUES (null, 1) AS tab(y, x)") >>> df.select(sf.regr_intercept("y", "x")).show() +--------------------+ |regr_intercept(y, x)| +--------------------+ | NULL| +--------------------+
Example 4: Some pairs’ x values are null
>>> import pyspark.sql.functions as sf >>> df = spark.sql("SELECT * FROM VALUES (1, 1), (2, null), (3, 3), (4, 4) AS tab(y, x)") >>> df.select(sf.regr_intercept("y", "x")).show() +--------------------+ |regr_intercept(y, x)| +--------------------+ | 0.0| +--------------------+
Example 5: Some pairs’ x or y values are null
>>> import pyspark.sql.functions as sf >>> df = spark.sql("SELECT * FROM VALUES (1, 1), (2, null), (null, 3), (4, 4) AS tab(y, x)") >>> df.select(sf.regr_intercept("y", "x")).show() +--------------------+ |regr_intercept(y, x)| +--------------------+ | 0.0| +--------------------+